Convergence of a Proximal Point Algorithm for Solving Minimization Problems
نویسندگان
چکیده
منابع مشابه
Convergence of a Proximal Point Algorithm for Solving Minimization Problems
We introduce and consider a proximal point algorithm for solving minimization problems using the technique of Güler. This proximal point algorithm is obtained by substituting the usual quadratic proximal term by a class of convex nonquadratic distance-like functions. It can be seen as an extragradient iterative scheme. We prove the convergence rate of this new proximal point method under mild a...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملConvergence of the Proximal Point Method for Quasiconvex Minimization
This paper extends the full convergence of the classic proximal point method to solve continuous quasiconvex minimization problems in Euclidian spaces. Under the assumption that the global minimizer set is nonempty we prove the full convergence of the sequence generated by the method to a certain generalized critical point of the problem.
متن کاملA Bundle Interior Proximal Method for Solving Convex Minimization Problems
In this paper we extend the standard bundle proximal method for finding the minimum of a convex not necessarily differentiable function on the nonnegative orthant. The strategy consists in approximating the objective function by a piecewise linear convex function and using distance–like functions based on second order homogeneous kernels. First we prove the convergence of this new bundle interi...
متن کاملLinear Convergence of Proximal Gradient Algorithm with Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
In this paper, we study the proximal gradient algorithm with extrapolation for minimizing the sum of a Lipschitz differentiable function and a proper closed convex function. Under the error bound condition used in [19] for analyzing the convergence of the proximal gradient algorithm, we show that there exists a threshold such that if the extrapolation coefficients are chosen below this threshol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2012
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2012/142862