Convergence of a Proximal Point Algorithm for Solving Minimization Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a Proximal Point Algorithm for Solving Minimization Problems

We introduce and consider a proximal point algorithm for solving minimization problems using the technique of Güler. This proximal point algorithm is obtained by substituting the usual quadratic proximal term by a class of convex nonquadratic distance-like functions. It can be seen as an extragradient iterative scheme. We prove the convergence rate of this new proximal point method under mild a...

متن کامل

A strong convergence theorem for solutions of zero point problems and fixed point problems

Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces‎.

متن کامل

Convergence of the Proximal Point Method for Quasiconvex Minimization

This paper extends the full convergence of the classic proximal point method to solve continuous quasiconvex minimization problems in Euclidian spaces. Under the assumption that the global minimizer set is nonempty we prove the full convergence of the sequence generated by the method to a certain generalized critical point of the problem.

متن کامل

A Bundle Interior Proximal Method for Solving Convex Minimization Problems

In this paper we extend the standard bundle proximal method for finding the minimum of a convex not necessarily differentiable function on the nonnegative orthant. The strategy consists in approximating the objective function by a piecewise linear convex function and using distance–like functions based on second order homogeneous kernels. First we prove the convergence of this new bundle interi...

متن کامل

Linear Convergence of Proximal Gradient Algorithm with Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems

In this paper, we study the proximal gradient algorithm with extrapolation for minimizing the sum of a Lipschitz differentiable function and a proper closed convex function. Under the error bound condition used in [19] for analyzing the convergence of the proximal gradient algorithm, we show that there exists a threshold such that if the extrapolation coefficients are chosen below this threshol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/142862